Petrucci's General Chemistry

PRINCIPLES AND MODERN APPLICATIONS

Twelfth Edition

PETRUCCI HERRING MADURA BISSONNETTE

Complex Ions and Coordination Compounds

24

PHILIP DUTTON UNIVERSITY OF WINDSOR DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

Complex lons and Coordination Compounds

CONTENTS

- 24-1 Werner's Theory of Coordination Compounds: An Overview
- 24-2 Ligands
- 24-3 Nomenclature
- 24-4 Isomerism
- 24-5 Bonding in Complex Ions: Crystal Field Theory
- 24-6 Magnetic Properties of Coordination Compounds and Crystal Field Theory
- 24-7 Color and the colors of Complexes
- 24-8 Aspects of Complex-Ion Equilibria

Complex Ions and Coordination Compounds

CONTENTS

- 24-9 Acid-Base Reactions of Complex lons
- 24-10 Some Kinetic Considerations
- 24-11 Applications of Coordination Chemistry

24-1 Werner's Theory of Coordination Compounds: An Overview

$[C_{\alpha}(\mathbf{NIII})]^{3+}$	$[C_{\alpha}C_{\alpha}]$ (NIII.) 1–	Table 24.1	Some Common Coordination Numbers of Metal lons
$[\operatorname{CO}(\operatorname{NH}_3)_6]^{\circ}$	$[COCI_4(INI_3)_2]$	Cu ⁺	2, 4
Complex cation	Complex anion	Ag ⁺ Au ⁺	2 2, 4
		Fe ²⁺	6
		Co ²⁺	4,6
$[\text{CoCl}_3(\text{NH}_3)_3]$	$K_4[Fe(CN)_6]$	Ni^{2+} Cu^{2+} Zn^{2+}	4, 6 4, 6 4
Neutral complex	Coordination	Pt ²⁺	4
	compound	A1 ³⁺	4,6
		Sc^{3+}	6
		Cr^{3+}	6
		Fe ⁻¹	6
		Au ³⁺	4
		Pt ⁴⁺	6

24-2 Ligands

Table 24.2 Some Com		mon Mon	odentate Li	igands		
Formula	Name as Ligand	Formula	Name as Ligand ^a	Formula	Name as Ligand	
Neutral molecules		Anions		Anions		
H ₂ O	Aqua	F ⁻	Fluorido	SO_4^{2-}	Sulfato	
NH ₃	Ammine	Cl-	Chlorido	S ₂ O ₃ ²⁻	Thiosulfato	
CO	Carbonyl	Br ⁻	Bromido	NO_2^-	Nitrito-N- ^b	
NO	Oxidonitrogen	Ι-	Iodido	ONO-	Nitrito-O- ^b	
CH_3NH_2	Methanamine	O ^{2–}	Oxido	SCN ⁻	Thiocyanato-S- ^c	
C_5H_5N	Pyridine	OH-	Hydroxido	NCS ⁻	Thiocyanato-N- ^c	
		CN-	Cyanido			

^aBefore 2005, these ligands were named as follows: F^- , fluoro; Cl^- , chloro; Br^- , bromo; I^- , iodo; O^{2-} , oxo; OH^- , hydroxo; CN^- , cyano.

^bIf the nitrite ion is attached through the N atom (—NO₂), the designation *nitrito-N-* is used; if attached through an O atom (—ONO), *nitrito-O-*.

^cIf the thiocyanate ion is attached through the S atom (—SCN), the name *thiocyanato-S*- is used; if attachment is through the N atom (—NCS), *thiocyanato-N*-.

^aOxalic acid is a diprotic acid denoted H₂ox. It is the ox ^{2–} anion that binds as a bidentate ligand. ^bEthylenediaminetetraacetic acid, a tetraprotic acid, is denoted H₄EDTA.

FIGURE 24-3 Three representations of the chelate $[Pt(en)_2]^{2+}$

24-3 Nomenclature

- Anions as ligands are named using the ending -o

 -ide changes to-ido, -ite to -ito, and -ate to -ato.
- 2) Neutral molecules generally carry the unmodified name
- 3) The number of ligands is denoted by a prefix mono, di, tri, tetra, penta, hexa
- 4) Ligands are named first in alphabetical order followed by the name of the metal center. Oxidation state is denoted by a Roman numeral. Anions end the metal name in -ate
- 5) Formula is written with metal first, followed by the ligand symbols in alphabetical order
- 6) Cations come first, followed by anions

Table 24.4	Names for Some Metals in Complex Anions			
Iron — Copper — Tin — Silver — Lead — Gold —	$\begin{array}{l} \rightarrow & \text{Ferrate} \\ \rightarrow & \text{Cuprate} \\ \rightarrow & \text{Stannate} \\ \rightarrow & \text{Argentate} \\ \rightarrow & \text{Plumbate} \\ \rightarrow & \text{Aurate} \end{array}$			

Ionization Isomerism

[Cr(NH₃)₅SO₄]Cl

[CrCl(NH₃)₅]SO₄

Pentamminesulfatochromium (III) chloride

Pentamminechloridochromiium(III) sulfate

Coordination Isomerism

$[Co(NH_3)_6][Cr(CN)_6]$

 $[Cr(NH_3)_6][Co(CN)_6]$

Hexaamminecobalt(III) hexacyanidochromate(III)

Hexaamminechromium(III) hexacyanidocobaltate(III)

 $[Co(NO_2)(NH_3)_5]^{2+}$

 $[Co(NH_3)_5(ONO)]^{2+}$

Pentaamminenitrito-N-cobalt(III) ion

Pentaamminenitrito-O-cobalt(III) ion

Geometric Isomerism

 $[PtCl_2(NH_3)_2]$

cis-diamminedichloridoplatinum(II) or *trans*-diamminedichloridoplatinum(II)

▲ FIGURE 24-4 Linkage isomerism-illustrated

Petrucci's General Chemistry: Chapter 24 © 2023 Pearson Education Ltd. All Rights Reserved

trans-[PtCl₂(NH₃)₂]

 \blacktriangle The geometric isomers of [PtCl₂(NH₃)₂]

▲ FIGURE 24-5 Geometric isomerism-illustrated

Petrucci's General Chemistry: Chapter 24 © 2023 Pearson Education Ltd. All Rights Reserved

▲ FIGURE 24-6 *Cis* and *trans* isomers of an octahedral complex

fac-[CoCl₃(NH₃)₃]

 \blacktriangle The geometric isomers of [CoCl₃(NH₃)₃]

Optical Isomerism

▲ Figure 24-7 Superimposable and nonsuperimposable objects-an open-top box

Isomerism and Werner's Theory

24-5 Bonding in Complex Ions: Crystal Field Theory

FIGURE 24-1 Approach of six anions to a metal ion to form a complex ion with octahedral structure

▲ FIGURE 24-12 Splitting of d energy levels in the formation of an octahedral complex ion

low spin

high spin

Strong field (large $\Delta_{\rm o}$) $CN^- > NO_2^- > en > py \approx NH_3 > EDTA^{4-} > SCN^- > H_2O >$ $ONO^{-} > ox^{2-} > OH^{-} > F^{-} > SCN^{-} > Cl^{-} > Br^{-} > I^{-}$ (small Δ_0) Weak field

The red color indicates the donor atom.

24-6 Magnetic Properties of Coordination Compounds and Crystal Field Theory

▲ FIGURE 24-15 Paramagnetism–illustrated

24-7 Color and the Colors of Complexes Primary, Secondary and Complimentary Colors

(a) Additive color mixing

(b) Subtractive color mixing

Colored Solutions

Table 24.5	Some Coordination Compounds of Cr ³⁺ and Their Colors			
lsomer	Color			
$[Cr(H_2O)_6]C$	Violet			
$[CrCl(H_2O)_5]$	Cl ₂ Blue-green			
$[Cr(NH_3)_6]C$	l ₃ Yellow			
$[CrCl(NH_3)_5]$	Cl ₂ Purple			

▲ FIGURE 24-18 Effects of ligands on the colors of coordination compounds

$$\operatorname{Zn}^{2+}(\operatorname{aq}) + 4\operatorname{NH}_{3}(\operatorname{aq}) \Longrightarrow [\operatorname{Zn}(\operatorname{NH}_{3})_{4}]^{2+}(\operatorname{aq})$$
(24.1)

$$K_{f} = \frac{\left[\left[\text{Zn}(\text{NH}_{3})_{4}\right]\right]^{2+}}{\left[\text{Zn}^{2+}\right]\left[\text{NH}_{3}\right]^{4}} = 4.1 \times 10^{8}$$
(24.2)

The displacement occurs in a stepwise fashion:

$$[\operatorname{Zn}(\operatorname{H}_{2}\operatorname{O})_{4}]^{2^{+}} + \operatorname{NH}_{3} \rightleftharpoons [\operatorname{Zn}(\operatorname{H}_{2}\operatorname{O})_{3}(\operatorname{NH}_{3})]^{2^{+}} + \operatorname{H}_{2}\operatorname{O}$$
(24.3)

$$K_{1} = \frac{\left[\left[\text{Zn}(\text{H}_{2}\text{O})_{3}(\text{NH}_{3})\right]^{2^{+}}\right]}{\left[\left[\text{Zn}(\text{H}_{2}\text{O})_{4}\right]^{2^{+}}\right]\left[\text{NH}_{3}\right]} = 4.1 \times 10^{8}$$
(24.4)

$$[Zn(H_2O)_3(NH_3)]^{2+} + NH_3 \rightleftharpoons [Zn(H_2O)_2(NH_3)_2]^{2+} + H_2O$$
(24.5)

$$K_{2} = \frac{\left[\left[\text{Zn}(\text{H}_{2}\text{O})_{2}(\text{NH}_{3})_{2}\right]^{2+}\right]}{\left[\left[\text{Zn}(\text{H}_{2}\text{O})_{3}(\text{NH}_{3})\right]^{2+}\right]\left[\text{NH}_{3}\right]} = 2.1 \times 10^{2}$$
(24.6)

$$\operatorname{Zn}^{2+}(\operatorname{aq}) + 4\operatorname{NH}_{3}(\operatorname{aq}) \rightleftharpoons [\operatorname{Zn}(\operatorname{NH}_{3})_{4}]^{2+}(\operatorname{aq})$$
(24.1)

$$K_{f} = \frac{\left[\left[\text{Zn}(\text{NH}_{3})_{4}\right]\right]^{2+}}{\left[\text{Zn}^{2+}\right]\left[\text{NH}_{3}\right]^{4}} = 4.1 \times 10^{8}$$
(24.2)

 K_1 is often designated β_1 and is called the formation constant for $[Zn(H_2O)_3NH_3]^{2+}$ β_2 is the formation constant for $[Zn(H_2O)_2(NH_3)_2]^{2+}$, the sum of (23.3) and (23.4)

$$[Zn(H_2O)_4]^{2+} + 2NH_3 \rightleftharpoons [Zn(H_2O)_2(NH_3)_2]^{2+} + 2H_2O \qquad (24.7)$$

$$\beta_2 = \frac{\left[\left[\text{Zn}(\text{H}_2\text{O})_2(\text{NH}_3)_2\right]^{2^+}\right]}{\left[\left[\text{Zn}(\text{H}_2\text{O})_4\right]^{2^+}\right]\left[\text{NH}_3\right]^2} = K_1 \times K_2 = 8.2 \times 10^4$$
(24.8)

$$Zn^{2+}(aq) + 4 NH_{3}(aq) \rightleftharpoons [Zn(NH_{3})_{4}]^{2+}(aq) \qquad (24.1)$$

$$K_{f} = \frac{[[Zn(NH_{3})_{4}]]^{2+}}{[Zn^{2+}][NH_{3}]^{4}} = 4.1 \times 10^{8} \qquad (24.2)$$

The formation constants for all four ions in the series are given by:

 $[Zn(H_2O)_3NH_3]^{2+} \qquad \beta_1 = K_1$ $[Zn(H_2O)_2(NH_3)_2]^{2+} \qquad \beta_2 = K_1 \times K_2$ $[Zn(H_2O)_1(NH_3)_3]^{2+} \qquad \beta_2 = K_1 \times K_2 \times K_3$ $[Zn(NH_3)_4]^{2+} \qquad \beta_4 = K_1 \times K_2 \times K_3 \times K_4$

Table 24.6	Stepwise	e and Overall	Formation	(Stability) Co	onstants for	Severa	l Comp	lex lons
Metal ^a lon	Ligand	<i>K</i> ₁	K ₂	K ₃	K ₄	K_5	K ₆	β_n (or $K_{\rm f})^{\rm b}$
Ag ⁺	NH ₃	2.0×10^{3}	7.9×10^{3}					1.6×10^{7}
Zn ²⁺	NH ₃	3.9×10^2	2.1×10^2	1.0×10^2	5.0×10^1			4.1×10^8
Cu ²⁺	NH ₃	1.9×10^4	3.9×10^3	1.0×10^{3}	1.5×10^2			1.1×10^{13}
Ni ²⁺	NH ₃	6.3×10^2	1.7×10^2	5.4×10^1	1.5×10^1	5.6	1.1	5.3×10^8
Cu ²⁺	en	5.2×10^{10}	2.0×10^9					1.0×10^{20}
Ni ²⁺	en	3.3×10^7	1.9×10^6	1.8×10^4				1.1×10^{18}
Ni ²⁺	EDTA	4.2×10^{18}						4.2×10^{18}

^aIn many tabulations in the chemical literature, formation-constant data are presented as logarithms: that is,

 $\log K_1$, $\log K_2$,..., and $\log \beta_n$. ^bThe β_n listed is for the number of steps shown: e.g., for $[Ag(NH_3)_2]^+$, $\beta_2 = K_f = K_1 \times K_2$; for $[Ni(en)_3]^{2+}$, $\beta_3 = K_f = K_1 \times K_2 \times K_3$; and for $[Ni(EDTA)]^{2-}$, $\beta_1 = K_f = K_1$.

24-9 Acid-Base Reactions of Complex Ions

FIGURE 24-19
Ionization of
$$[Fe(H_2O)_6]^{3+1}$$

24-10 Some Kinetic Considerations

$trans - [CrCl_2(H_2O)_4)]^+ + 2H_2O \xrightarrow{1-2d} [Cr(H_2O)_6]^{3+} + 2Cl^-$

24-11 Applications of Coordination Chemistry **Cisplatin: A Cancer-Fighting Drug**

trans-[PtCl₂(NH₃)₂] (transplatin)

cis-[PtCl₂(NH₃)₂] (cisplatin)

treat with AgNO3 followed by KCl to obtain cisplatin Petrucci's General Chemistry: Chapter 24 © 2023 Pearson Education Ltd. All Rights Reserved

Cisplatin enters the cell by diffusion and hydrolyses:

$$\begin{array}{c} Cl & \stackrel{}{\underset{}}{\overset{}}{}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\underset{}}{\overset{}}{\overset{}}{\overset{}}{\underset{}}{\overset{}}{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}$$

binds to cellular DNA

Platinum based drugs have annual sales in excess of \$2B.

Hydrates

 $[Co(H_2O)_6](ClO_4)_2 \qquad Co(ClO_4)_2 \bullet 6 H_2O$

 $[CuSO_4] \bullet 5 H_2O \qquad [Cu(H_2O)_4][SO_4 \bullet H_2O]$

 $BaCl_2 \bullet 2 H_2O$ *lattice water*

 $KAl(SO_4)_2 \cdot 12 H_2O$

In alums, some water is coordinated to an ion and some is lattice water

Stabilization of Oxidation States

$$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \longrightarrow \operatorname{Co}^{2+}(\operatorname{aq}) \qquad E^{\circ} = +1.82 \text{ V}$$

 Co^{3+} is a strong oxidizing agent and oxidizes water to O_2

$$4 \operatorname{Co}^{3+}(\operatorname{aq}) + 2 \operatorname{H}_2 O \longrightarrow 4 \operatorname{Co}^{2+}(\operatorname{aq}) + 4 \operatorname{H}^+(\operatorname{aq}) + O_2(g) \qquad E^{\circ}_{\operatorname{cell}} = +0.59 \operatorname{V} \quad (24.12)$$

strong electron pair donors stabilize high oxidation states

$$\text{Co}^{3+}(\text{aq}) + 6 \text{ NH}_3(\text{aq}) \rightleftharpoons [\text{Co}(\text{NH}_3)_6]^{3+}(\text{aq}) \qquad \beta_6 = K_f = 4.5 \times 10^{33}$$

$$[\operatorname{Co(NH}_3)_6]^{3+}(\operatorname{aq}) + e^- \longrightarrow [\operatorname{Co(NH}_3)_6]^{2+} \qquad E^\circ = +0.10 \text{ V}$$

Photography: Fixing a Photographic Film

exposure Ag^+Br^- (in the lattice) $\xrightarrow{hv} Ag^0Br^0$ defects in the crystal lattice

fixing
$$\operatorname{AgBr}(s) + 2 \operatorname{S}_2 \operatorname{O}_3^{2-} \longrightarrow [\operatorname{Ag}(\operatorname{S}_2 \operatorname{O}_3)_2]^{3-}(\operatorname{aq}) + \operatorname{Br}^{-}(\operatorname{aq})$$
 (24.13)

Black metallic Ag remains on the film, while the unexposed AgBr is removed.

A negative image is created. Photographic paper is then exposed to light shining through the negative, and the same process then produces the corresponding positive image.

Qualitative Analysis

▲ FIGURE 24-22 Qualitative tests for Co²⁺ and Fe³⁺

Sequestering Metal Ions

sodium salt of *ethylenediaminetetraacetic acid* (Na₄EDTA)

A chelating agent

Structure of a metal-EDTA complex

Biological Applications: Porphyrins

End of Chapter