Petrucci's General Chemistry

PRINCIPLES AND MODERN APPLICATIONS

Twelfth Edition

PETRUCCI

HERRING

MADURA

BISSONNETTE

Acids and Bases

17

Acids and Bases

CONTENTS

17-1	Acids, Bases, and Conjugate Acid-Base Pairs
17-2	Self Ionization of Water and the pH Scale
17-3	Ionization of Acids and Bases in Water
17-4	Strong Acids and Strong Bases
17-5	Weak Acids and Weak Bases
17-6	Polyprotic Acids
17-7	Simultaneous or Consecutive Acid-Base Reactions: A General Approach

Acids and Bases

CONTENTS

17-8	Ions as Acids and Bases
17-9	Qualitative Aspects of Acid-Base Reactions
17-10	Molecular Structure and Acid Base Behavior
17-11	Lewis Acids and Bases

17-1 Acids, Bases, and Conjugate Acid-Base Pairs

Brønsted-Lowry theory

An acid is a **proton donor**.

A base is a **proton acceptor**.

$$CH_3COOH(aq) + H_2O(aq) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$$
 (17.1)
Acid Base Base Acid

Conjugate acid-base pair

An acid contains at least one ionizable H atom, and a base contains an atom with a lone pair of electrons onto which a proton can bind.

▲ FIGURE 17-1

The ionization of CH₃COOH in water

Conjugate acid-base pair

▲ FIGURE 17-2

The ionization of NH₃ in water

- An acid contains at least one ionizable H atom, and a base contains an atom with a lone pair of electrons onto which a proton can bind.
- For a conjugate acid—base pair, the molecular formulas for the acid and base differ by a single proton (H⁺)

• When added to water, acids protonate water molecules to form hydronium (H₃O⁺) ions and bases deprotonate water molecules to form hydroxide (OH⁻) ions.

► FIGURE 17-3

The hydrated hydronium ion

17-2 Self-Ionization of Water and the pH Scale

$$2 \text{ H}_2\text{O}(1) \iff \text{H}_3\text{O}^+(\text{aq}) + \text{OH}^-(\text{aq})$$

$$2 \text{ H}_2\text{O}(1) \iff \text{H}_3\text{O}^+(\text{aq}) + \text{OH}^-(\text{aq})$$

$$\downarrow \text{O} - \text{H} \qquad \qquad \downarrow \text{O} - \text{H}$$

$$\downarrow \text{Base} \qquad \text{Acid} \qquad \text{Acid} \qquad \text{Base}$$

$$(17.3)$$

ion product of water

$$K_{w} = \frac{a_{\text{H}_{3}\text{O}^{+}(aq)}^{+} a_{\text{OH}^{-}(aq)}^{-}}{a_{\text{H}_{2}\text{O}(l)}^{2}} = \frac{([\text{H}_{3}\text{O}^{+}]/c^{\circ}) ([\text{OH}^{-}]/c^{\circ})}{(1)^{2}} = \left(\frac{[\text{H}_{3}\text{O}^{+}]}{1 \text{ M}}\right) \left(\frac{[\text{OH}^{-}]}{1 \text{ M}}\right)$$

$$K = [H_3O^+][OH^-] = 1.0 \times 10^{-14} (at 25^{\circ}C)$$
 (17.4)

In pure water:
$$[H_3O^+]/(1 \text{ M}) = [OH^-]/(1 \text{ M}) = 1.0 \times 10^{-7} (\text{at } 25^{\circ}\text{C})$$
 (17.5)

In all aqueous solutions at 25°C, the product of $[H_3O^+]$ and $[OH^-]$ always equals 1.0×10^{-14} .

The self-ionization of water is partially suppressed by the addition of acid or base to water.

pH and pOH

The "potential of the hydrogen ion" was defined in 1909 as the negative of the logarithm of [H⁺].

$$pH = -log[H_3O^+]$$

$$[H_3O^+] = 2.5 \times 10^{-3} \text{ M}$$

$$pH = -log(2.5 \times 10^{-3}) = 2.60$$

$$pH = 4.5$$

$$log [H_3O^+] = -4.5$$

$$[H_3O^+] = 10^{-4.5} = 3.2 \times 10^{-5}$$

$$pOH = -log[OH^{-}]$$

$$K_{\rm W} = [{\rm H_3O^+}][{\rm OH^-}]$$

$$-{\rm log}K_{\rm W} = -({\rm log}[{\rm H_3O^+}] + {\rm log}[{\rm OH^-}])$$

$$pK_{\rm W} = -({\rm log}[{\rm H_3O^+}] + {\rm log}[{\rm OH^-}])$$

$$= -{\rm log}[{\rm H_3O^+}] - {\rm log}[{\rm OH^-}]$$

$$= p{\rm H} + p{\rm OH}$$

$$K_{\rm W} = 1.0 \times 10^{-14}$$
 p $K_{\rm W} = 14$

$$pH + pOH = 14 (at 25^{\circ}C)$$
 (17.8)

Acidic, Basic, and Neutral Solutions

Table 17.1 Acidic, Basic, and Neutral Solutions				
	Neuti	al Solution	Acidic Solution	Basic Solution
Relationship between				
$[H_3O^+]$ and $[O]$	H ⁻] [H ₃ O	$^{+}] = [OH^{-}]$	$[H_3O^+] > [OH^-]$	$[H_3O^+] < [OH^-]$
$[H_3O^+]$ at $25^{\circ}C$	$[H_3O]$	$^{+}] = 1.0 \times 10^{-7} \mathrm{M}$	$[H_3O^+] > 1.0 \times 10^{-7} \mathrm{M}$	$[H_3O^+] < 1.0 \times 10^{-7} \mathrm{M}$
pH at 25°C	pH =	7	pH < 7	pH > 7

▲ FIGURE 17-4
Relating [H₃O⁺], pH, [OH⁻], and pOH

▲ FIGURE 17-5

The pH scale and pH values of some common materials

17-3 Ionization of Acids and Bases in Water

▲ FIGURE 17-6

Strong and weak acids compared

Thymol Blue Indicator pH < 1.2 < pH < 2.8 < pH

Table 17.2 Relative Strengths of Some Common Brønsted-Lowry Acids and Bases

		Conjugate Base		
Perchloric acid	HClO ₄	Perchlorate ion	ClO ₄ -	
Hydroiodic acid	HI	Iodide ion	Ι	
Hydrobromic acid	HBr	Bromide ion	Br [—]	
Hydrochloric acid	HC1	Chloride ion	Cl ⁻	
Sulfuric acid	H_2SO_4	Hydrogen sulfate ion	HSO_4^-	sth
Nitric acid	$\tilde{\text{HNO}}_{3}^{\tau}$	Nitrate ion		strength
Hydronium ion ^a	H ₃ O ⁺	Water ^a	H₂Ŏ	
Hydrogen sulfate ion	HŠO₄¯	Sulfate ion	SÕ₄²−	base
Nitrous acid	HNO_2	Nitrite ion	NO ₂ -	os p
Acetic acid	CH₃ĈOOH	Acetate ion	CH ₃ COO	Sing
Carbonic acid	H ₂ ČO ₃	Hydrogen carbonate ion	HCO ₃ -	Increasin
Ammonium ion	NH_4^+	Ammonia	NH_3	l lici
Hydrogen carbonate ion	HCO ₃ -	Carbonate ion		
Water	H ₂ O	Hydroxide ion	OH_	
Methanol	CH₃OH	Methoxide ion	CH ₃ O	\
Ammonia	NH_3	Amide ion	NH ₂ -	
	Hydroiodic acid Hydrobromic acid Hydrochloric acid Sulfuric acid Nitric acid Hydronium ion ^a Hydrogen sulfate ion Nitrous acid Acetic acid Carbonic acid Ammonium ion Hydrogen carbonate ion Water Methanol	Hydroiodic acid Hydrobromic acid Hydrochloric acid HCl Sulfuric acid HNO ₃ Hydronium ion ^a Hydronium ion ^a Hydrogen sulfate ion Nitrous acid Acetic acid Carbonic acid Ammonium ion Hydrogen carbonate ion HCO ₃ Hydrogen Hydrog	Perchloric acid $HClO_4$ Perchlorate ion Hydroiodic acid HI Iodide ion Hydrobromic acid HBr Bromide ion Chloride ion Hydrochloric acid HCl Chloride ion Sulfuric acid H $_2SO_4$ Hydrogen sulfate ion Nitric acid H $_3O^+$ Water Hydrogen sulfate ion Nitrous acid HNO $_3$ Nitrate ion Water Sulfate ion Nitrous acid HNO $_2$ Sulfate ion Nitrous acid HNO $_2$ Nitrite ion Acetic acid CH_3COOH Acetate ion Carbonic acid H_2CO_3 Hydrogen carbonate ion Hydroxide ion Methanol CH_3OH Methoxide ion	Perchloric acid $HClO_4$ Perchlorate ion I^- Hydroiodic acid I^- Hydroiodic acid I^- Hydroiodic acid I^- Hydroshormic acid I^- Hydrochloric acid I^- Hydrochloric acid I^- Hydrochloric acid I^- Hydrogen sulfate ion I^- Sulfuric acid I^- Hydrogen sulfate ion I^- Hydronium ion I^- Hydrogen sulfate ion I^- Sulfate ion I^- Sulfate ion I^- Hydrogen sulfate ion I^- Hydrogen sulfate ion I^- Hydrogen sulfate ion I^- Sulfate ion I^- Sulfate ion I^- No $_2^-$ Nitrite ion I^- No $_2^-$ Acetic acid I^- Carbonic acid I^- Hydrogen carbonate ion I^- Carbonate ion I^- Carbonate ion I^- Hydroxide ion

^aThe hydronium ion–water combination refers to the ease with which a proton is passed from one water molecule to another; that is, $H_3O^+ + H_2O \rightleftharpoons H_2O + H_3O^+$.

$$HA(aq) + H_2O(aq) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$
 (17.9)

$$K = \frac{a_{\text{H}_3\text{O}^+(aq)}^+ a_{\text{A}^-(aq)}^-}{a_{\text{HA}(aq)}^+ a_{\text{H}_2\text{O}(l)}^+} = \frac{([\text{H}_3\text{O}^+]/c^\circ) ([\text{OH}^-]/c^\circ)}{([\text{HA}]/c^\circ) (1)} = \left(\frac{[\text{H}_3\text{O}^+][\text{A}^-]}{[\text{HA}]}\right) \times \left(\frac{1}{c^\circ}\right)$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$
 (17.10)

$$pK_a = -\log K_a \text{ or } K_a = 10^{-pK_a}$$
 (17.11)

$$B(aq) + H2O(aq) \iff BH^{+}(aq) + OH^{-}(aq)$$
 (17.12)

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$
 (17.13)

$$pK_b = -\log K_b \text{ or } K_b = 10^{-pK_b}$$
 (17.14)

$$HA(aq) + H_2O(aq) \rightleftharpoons A^-(aq) + H_3O^+(aq)$$

$$K_a = \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{A}^-]}{[\mathrm{H}\mathrm{A}]}$$

- A strong acid or base has a large ionization constant: K_a or K_b is much greater than 1.
- A weak acid or base has a small ionization constant: K_a or K_b is much less than 1.

$$B(aq) + H2O(aq) \iff BH^{+}(aq) + OH^{-}(aq)$$

$$K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$

Table 17.4 Ionization Constants of Some Weak Acids and Weak Bases in Water at 25°C

	Ionization Equilibrium	lonization Constant K	рK	
Acid		$K_{\rm a} =$	$pK_a =$	
Iodic acid	$HIO_3 + H_2O \Longrightarrow H_3O^+ + IO_3^-$	1.6×10^{-1}	0.80	1
Chlorous acid	$HClO_2 + H_2O \rightleftharpoons H_3O^+ + ClO_2^-$	1.1×10^{-2}	1.96	
Chloroacetic acid	$CICH_2COOH + H_2O \Longrightarrow H_3O^+ + CICH_2COO^-$	1.4×10^{-3}	2.85	
Nitrous acid	2 HNO ₂ + 2 H ₂ O \Longrightarrow 2 H ₃ O ⁺ + 2 NO ₂ ⁻²	7.2×10^{-4}	3.14	
Hydrofluoric acid	$HF + H_2O \Longrightarrow H_3O^+ + F^-$	6.6×10^{-4}	3.18	타
Formic acid	$HCOOH + H_2O \Longrightarrow H_3O^+ + HCOO^-$	1.8×10^{-4}	3.74	Sug
Benzoic acid	$C_6H_5COOH + H_2O \implies H_3O^+ + C_6H_5COO^-$	6.3×10^{-5}	4.20	Acid strength
Hydrazoic acid	$HN_3 + H_2O \Longrightarrow H_3O^+ + N_3^-$	1.9×10^{-5}	4.72	ig.
Acetic acid	$CH_3COOH + H_2O \Longrightarrow H_3O^+ + CH_3COO^-$	1.8×10^{-5}	4.74	Ā
Hypochlorous acid	$HOCl + H_2O \Longrightarrow H_3O^+ + OCl^-$	2.9×10^{-8}	7.54	
Hydrocyanic acid	$HCN + H_2O \Longrightarrow H_3O^+ + CN^-$	6.2×10^{-10}	9.21	
Phenol	$C_6H_5OH + H_2O \Longrightarrow H_3O^+ + C_6H_5O^-$	1.0×10^{-10}	10.00	
Hydrogen peroxide	$H_2O_2 + H_2O \Longrightarrow H_3O^+ + HO_2^-$	1.8×10^{-12}	11.74	
Base		$K_{\mathbf{b}} =$	$pK_b =$	
Diethylamine	$(CH_3CH_2)_2NH + H_2O \Longrightarrow (CH_3CH_2)_2NH_2^+ + OH_2^-$	$[-6.9 \times 10^{-4}]$	3.16	1 _
Ethylamine	$CH_3CH_2NH_2 + H_2O \Longrightarrow CH_3CH_2NH_3^+ + OH^-$	4.3×10^{-4}	3.37	1gt
Ammonia	$^{2}NH_{3}^{2} + H_{2}^{2}O \Longrightarrow NH_{4}^{3} + ^{2}OH^{-}$	1.8×10^{-5}	4.74	strength
Hydroxylamine	$HONH_2 + H_2O \Longrightarrow HONH_3^+ + OH^-$	9.1×10^{-9}	8.04	
Pyridine	$C_5H_5N + H_2O \Longrightarrow C_5H_5NH^+ + OH^-$	1.5×10^{-9}	8.82	Base
Aniline	$C_6H_5NH_2 + H_2O \rightleftharpoons C_6H_5NH_3^+ + OH^-$	7.4×10^{-10}	9.13	

17-4 Strong Acids and Strong Bases

$$HCl(aq) + H_2O(aq) \longrightarrow Cl^-(aq) + H_3O^+(aq)$$

unless the solution of HCl is extremely dilute we can ignore the self-ionization of water. Even when [HCl] is as low as 1×10^{-6} M, the ionization of H₂O only contributes 1%.

With strong bases, the contribution from the self-ionization of water is also negligible.

$$Ca(OH)_2(aq) + H_2O(aq) \longrightarrow Ca^+(aq) + OH^-(aq)$$

17-5 Weak Acids and Weak Bases

The key to solving equilibrium problems is to be able to imagine what is going on. Ask yourself:

- Which are the principal species in solution?
- What are the chemical reactions that produce them?
- Can some reactions (for example, the self-ionization of water) be ignored?
- Can you make any assumptions that allow you to simplify the equilibrium calculations?
- What is a reasonable answer to the problem? For instance, should the final solution be acidic (pH < 7) or basic (pH > 7).

17-6 Polyprotic Acids

Phosphoric acid, H₃PO₄

A triprotic acid.

$$H_3PO_4 + H_2O \iff H_3O^+ + H_2PO_4^- \qquad K_{a1} = \frac{[H_3O^+][H_2PO_4^-]}{[H_2PO_4]} = 7.1 \times 10^{-3}$$

$$K_{a1} = \frac{[H_3O^*][H_2PO_4]}{[H_3PO_4]} = 7.1 \times 10^{-3}$$

$$H_2PO_4^- + H_2O \iff H_3O^+ + HPO_4^{2-} \qquad K_{a2} = \frac{[H_3O^+][HPO_4^{2-}]}{[H_3O^-]} = 6.3 \times 10^{-8}$$

$$K_{a2} = \frac{[H_3O^+][HPO_4^{2-}]}{[H_2PO_4^{-}]} = 6.3 \times 10^-$$

$$HPO_4^{2-} + H_2O \iff H_3O^+ + PO_4^{3-}$$

$$\text{HPO}_4^{2-} + \text{H}_2\text{O} \iff \text{H}_3\text{O}^+ + \text{PO}_4^{3-} \qquad K_{a3} = \frac{[\text{H}_3\text{O}^+][\text{PO}_4^{3-}]}{[\text{HPO}_4^{2-}]} = 4.2 \times 10^{-13}$$

$$H_3PO_4$$

$$K_{a1} >> K_{a2}$$

All H₃O⁺ is formed in the first ionization step.

H₂PO₄⁻ essentially does not ionize further.

Assume
$$[H_2PO_4^-] = [H_3O^+].$$

 $[\mathrm{HPO_4^{2-}}] \approx K_{\mathrm{a2}}$ regardless of solution molarity.

$$\frac{[H_3O^+][HPO_4^{2-}]}{[H_2PO_4^{-}]} = K_{a2}$$

Acid	Ionization Equilibria	Ionization Constants, K	рK
Hydrosulfurica	$H_2S + H_2O \iff H_3O^+ + HS^-$	$K_{a_1} = 1.0 \times 10^{-7}$	$pK_{a_1} = 7.00$
	$HS^- + H_2O \rightleftharpoons H_3O^+ + S^{2-}$	$K_{a_2} = 1 \times 10^{-19}$	$pK_{a_2} = 19.0$
Carbonic ^b	$H_2CO_3 + H_2O \implies H_3O^+ + HCO_3^-$	$K_{a_1} = 4.4 \times 10^{-7}$	$pK_{a_1} = 6.36$
	HCO_3 + H_2O \iff $H_3O^+ + CO_3^2$	$K_{a_2} = 4.7 \times 10^{-11}$	$pK_{a_2} = 10.33$
Citric	$H_3C_6H_5O_7 + H_2O \iff H_3O^+ + H_2C_6H_5O_7^-$	$K_{a_1} = 7.5 \times 10^{-4}$	$pK_{a_1} = 3.12$
	$H_2C_6H_5O_7^- + H_2O \iff H_3O^+ + HC_6H_5O_7^{2-}$	$K_{a_2} = 1.7 \times 10^{-5}$	$pK_{a_2} = 4.77$
	$HC_6H_5O_7^{2-} + H_2O \iff H_3O^+ + C_6H_5O_7^{3-}$	$K_{a_3} = 4.0 \times 10^{-7}$	$pK_{a_3} = 6.40$
Phosphoric	$H_3PO_4 + H_2O \rightleftharpoons H_3O^+ + H_2PO_4^-$	$K_{a_1} = 7.1 \times 10^{-3}$	$pK_{a_1} = 2.15$
	$H_2PO_4^- + H_2O \rightleftharpoons H_3O^+ + HPO_4^{2-}$	$K_{a_2} = 6.3 \times 10^{-8}$	$pK_{a_2} = 7.20$
	$HPO_4^{2-} + H_2O \rightleftharpoons H_3O^+ + PO_4^{3-}$	$K_{a_3} = 4.2 \times 10^{-13}$	$pK_{a_3} = 12.38$
Oxalic	$H_2C_2O_4 + H_2O \rightleftharpoons H_3O^+ + HC_2O_4^-$	$K_{a_1} = 5.6 \times 10^{-2}$	$pK_{a_1} = 1.25$
	$HC_2O_4^- + H_2O \iff H_3O^+ + C_2O_4^{2-}$	$K_{a_2} = 5.4 \times 10^{-5}$	$pK_{a_2} = 4.27$
Sulfurousc	$H_2SO_3 + H_2O \iff H_3O^+ + HSO_3^-$	$K_{a_1} = 1.3 \times 10^{-2}$	$pK_{a_1} = 1.89$
	$HSO_3^- + H_2O \rightleftharpoons H_3O^+ + SO_3^{2-}$	$K_{a_2} = 6.2 \times 10^{-8}$	$pK_{a_2} = 7.21$
Sulfuric ^d	$H_2SO_4 + H_2O \rightleftharpoons H_3O^+ + HSO_4^-$	$K_{a_1} = \text{very large}$	$pK_{a_1} < 0$
	HSO_4 + $H_2O \rightleftharpoons H_3O^+ + SO_4^2$	$K_{a_2} = 1.1 \times 10^{-2}$	$pK_{a_2} = 1.96$

Acid strength

$$CO_2(aq) + 2H_2O \rightleftharpoons H_3O^+ + HCO_3^-$$

Generally, aqueous solutions of CO_2 are treated as if the CO_2 (aq) were first converted to H_2CO_2 , followed by ionization of the H_2CO_2

 ${}^{\circ}\text{H}_{2}\text{SO}_{3}$ is a hypothetical, nonisolatable species. The value listed for $K_{\mathbf{a}_{1}}$ is actually for the reaction

$$SO_2(aq) + 2H_2O \rightleftharpoons H_3O^+ + HSO_3^-$$

^dH₂SO₄ is completely ionized in the first step.

^aThe value for K_{a_2} of H_2S most commonly found in older literature is about 1×10^{-14} , but current evidence suggests that the value is considerably smaller.

 $^{^{}b}H_{2}CO_{3}$ cannot be isolated. It is in equilibrium with $H_{2}O$ and dissolved CO_{2} . The value given for $K_{a_{1}}$ is actually for the reaction

A Somewhat Different Case: H₂SO₄

Sulfuric acid, H₂SO₄

A diprotic acid.

$$H_2SO_4 + H_2O \longrightarrow H_3O^+ + HSO_4^ K_a = \text{very large}$$

$$K_a = \text{very large}$$

$$HSO_4^- + H_2O \Longrightarrow H_3O^+ + SO_4^{2-} \qquad K_a = 1.1 \times 10^{-2}$$

$$K_a = 1.1 \times 10^{-2}$$

the small second ionization can be treated as in EXAMPLE 17-11

17-7 Simultaneous or Consecutive Acid-Base Reactions: A General Approach

- 1. Identify species present in solution (excluding H₂O).
- 2. Write equations that include these species.

Number of equations = number of unknowns.

- a) equilibrium constant expressions.
- b) material balance equations.
- c) electroneutrality condition.
- 3. Solve the system of equations for the unknowns.

Consider 0.10 M H₃PO₄

Species in solution

Reactions and equilibrium constants

$$H_3PO_4(aq) + H_2O(1) \iff H_3O^+(aq) + H_2PO_4^-(aq) \quad K_{a1} = \frac{[H_3O^+][H_2PO_4^-]}{[H_3PO_4]} = 7.1 \times 10^{-3}$$

$$H_2PO_4^-(aq) + H_2O(1) \iff H_3O^+(aq) + HPO_4^{2-}(aq) \quad K_{a2} = \frac{[H_3O^+][HPO_4^{2-}]}{[H_2PO_4^-]} = 6.3 \times 10^{-8}$$

$$HPO_4^{2-}(aq) + H_2O(1) \iff H_3O^+(aq) + PO_4^{3-}(aq) \qquad K_{a3} = \frac{[H_3O^+][PO_4^{3-}]}{[HPO_4^{2-}]} = 4.2 \times 10^{-13}$$

$$2 \text{ H}_2\text{O}(1) \iff \text{H}_3\text{O}^+(\text{aq}) + \text{OH}^-(\text{aq}) \qquad K_w = [\text{H}_3\text{O}^+][\text{OH}^-]$$

Consider 0.10 M H₃PO₄

Species in solution

Reactions and equilibrium constants

$$H_3PO_4(aq) + H_2O(1) \iff H_3O^+(aq) + H_2PO_4^-(aq) \quad K_{a1} = \frac{[H_3O^+][H_2PO_4^-]}{[H_3PO_4]} = 7.1 \times 10^{-3}$$

$$H_2PO_4^-(aq) + H_2O(1) \iff H_3O^+(aq) + HPO_4^{2-}(aq) \quad K_{a2} = \frac{[H_3O^+][HPO_4^{2-}]}{[H_2PO_4^-]} = 6.3 \times 10^{-8}$$

$$HPO_4^{2-}(aq) + H_2O(1) \iff H_3O^+(aq) + PO_4^{3-}(aq) \qquad K_{a3} = \frac{[H_3O^+][PO_4^{3-}]}{[HPO_4^{2-}]} = 4.2 \times 10^{-13}$$

$$2 \text{ H}_2\text{O}(1) \iff \text{H}_3\text{O}^+(\text{aq}) + \text{OH}^-(\text{aq}) \qquad K_w = [\text{H}_3\text{O}^+][\text{OH}^-]$$

We have four equations and six unknowns. Need two equations.

Material balance equation (MBE)

$$0.1 \text{ M} = [\text{H}_3\text{PO}_4] + [\text{H}_2\text{PO}_4^-] + [\text{HPO}_4^{2-}] + [\text{PO}_4^{3-}]$$

Charge balance equation (CBE)

$$[H_3O^+] = [H_2PO_4^-] + 2 \times [HPO_4^{2-}] + 3 \times [PO_4^{3-}] + [OH^-]$$

In principle, the system of six equations can be used to solve for six unknowns, either by making appropriate simplifying approximations or by computerized calculation.

17-8 Ions as Acids and Bases

$$NH_4^+ + H_2O \Longrightarrow NH_3 + H_3O^+$$
Acid (1) Base (2) Base (1) Acid (2) (17.17)

$$CH_3CO_2^- + H_2O \Longrightarrow CH_3CO_2H + OH^-$$
(17.18)

Base (2) Acid (1) Acid (2) Base (1)

$$K_{\rm a} = \frac{[{\rm NH_3}] [{\rm H_3O^+}]}{[{\rm NH_4}^+]} = ?$$
 (17.19)

$$NH_4^+ + H_2O \iff NH_3 + H_3O^+$$
Acid (1) Base (2) Base (1) Acid (2)
$$K_a = \frac{[NH_3][H_3O^+]}{[NH_4^+]} = ?$$

$$CH_3CO_2^- + H_2O \rightleftharpoons CH_3CO_2H + OH^-$$

Base (2) Acid (1) Acid (2) Base (1)

$$K_{\rm a} = \frac{[{\rm NH_3}] [{\rm H_3O^+}] [{\rm OH^-}]}{[{\rm NH_4^+}] [{\rm OH^-}]} = \frac{K_{\rm W}}{K_{\rm b}} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

The product of the ionization constants of an acid and its conjugate base equals the ion product of water.

$$K_{\rm a} ({\rm acid}) \times K_{\rm b} ({\rm its\ conjugate\ base}) = K_{\rm w}$$
 (17.20)
 $K_{\rm b} ({\rm base}) \times K_{\rm a} ({\rm its\ conjugate\ acid}) = K_{\rm w}$

$$CH_3CO_2^- + H_2O \rightleftharpoons CH_3CO_2H + OH^-$$
 (17.18)

$$K_b = \frac{\text{[CH_3COOH][OH^-]}}{\text{[CH_3COO^-]}} = \frac{K_w}{K_a(\text{CH_3COOH})} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5 \times 10^{-10}$$

The conjugate of weak is weak.

$$K_b(I^-) = K_w / K_b = 10^{-14} / 10^9 = 10^{-23}$$

The conjugate of strong is *extremely* weak.

17-10 Molecular Structure and Acid-Base Behavior

Why is HCl a strong acid, but HF is a weak one? Why is CH₃CO₂H a stronger acid than CH₃CH₂OH?

Molecular structure and acid strength are related.

Strengths of Binary Acids

$$HX(g) \longrightarrow H^+(g) + X^-(g)$$
 (17.23)

	н—сн ₃	H—NH ₂	н—он	н—ғ
$K_{\rm a}$	1×10^{-60}	1×10^{-34}	1.8×10^{-16}	6.6×10^{-4}
D(H-X)	414	389	464	565
$D(H^+X^-)$	1717	1630	1598	1549
			н—ѕн	н—сі
			1.0×10^{-7}	1×10^{6}
			368	431
			1458	1394
			H—SeH	H—Br
			1.3×10^{-4}	1×10^{8}
			335	364
			1434	1351
			Н—ТеН	н—і
			2.3×10^{-3}	1×10^{9}
			277	297
			1386	1314

▲ FIGURE 17-10

Bond dissociation energies (kJ mol⁻¹) and K_a values for some binary acids

When comparing binary acids of elements in the same row of the periodic table, acid strength increases as the polarity of the bond increases.

When comparing binary acids of elements in the same group of the periodic table, acid strength increases as the length of the bond increases.

HF is even weaker than expected based on periodic trends.

$$HF + H_2O \longrightarrow (F^- \cdots H_3O^+) \iff H_3O^+ + F^-$$
Ion pair

Strengths of Oxoacids

Factors promoting electron withdrawal from the OH bond to the oxygen atom:

High electronegativity (EN) of the central atom.

A large number of terminal O atoms in the molecule.

H-O-Cl H-O-Br
$$EN_{Cl} = 3.0$$
 $EN_{Br} = 2.8$ $K_a = 2.9 \times 10^{-8}$ $K_a = 2.1 \times 10^{-9}$

Strengths of Organic Acids

Acetic acid

$$K_{\rm a} = 1.8 \times 10^{-5}$$

Ethanol

$$K_a = 1.3 \times 10^{-16}$$

Focus on the anions formed in the ionization.

Ethoxide ion

Acetate ion

Chain length has little effect on the acid strength.

Substitution may strongly affect acid strength.

Strengths of Amines as Bases

ammonia

$$NH_3, pK_b = 4.74$$

bromamine

$$NH_2Br, pK_b = 7.61$$

Cyclohexylamine, $pK_b = 3.36$

Aniline, $pK_b = 9.13$

para-Chloroaniline, p $K_b = 10.01$

ortho-Chloroaniline, $pK_b = 11.36$

Rationalization of Acid Strengths: An Alternative Approach

Two approaches to rationalize the strength of an acid, HA.

- factors that cause electron density to be drawn away from the H atom
- factors that make A⁻ stable with respect to protonation

Inc	reasing	stabili	ty	
C-	N-	O-	F-	
	P-	S ⁻	Cl-	Increasing
		Se ⁻	Br ⁻	stability
		Te-	I-	

- the more electronegative the atom is, the better it is able to bear a negative charge. (CH₃O⁻ is more stable than NH₂⁻)
- the larger the atom, the greater its ability to bear a negative charge. (HS⁻ is more stable than HO⁻)
- the stability of the anion increases as the number of electron-withdrawing groups increases.
- the stability of the anion increases as the number of atoms sharing the charge increases

17-9 Lewis Acids and Bases

Lewis acid

A species (atom, ion or molecule) that is an electron pair acceptor.

Lewis base

A species that is an electron pair *donor*.

$$Ca^{2+} \cdot O^{2-} + {}^{+}S \qquad \longrightarrow \qquad Ca^{2+} \begin{bmatrix} \vdots O^{-} \\ \vdots O^{-} \end{bmatrix}^{2-}$$

$$(17.24)$$

Complex ions

▲ FIGURE 17-11

The Lewis structure of $[Al(H_2O)_6]^{3+}$ and a ball-and-stick representation

FIGURE 17-12

Hydrolysis of [Al(H₂O)₆]³⁺ to produce H₃O⁺

$$\rho = charge \ density = \frac{ionic \ charge}{ionic \ volume}$$

Metal Cation	lonic Radius, pm	$ ho imes 10^7$, Charge pm ⁻³	pK _a
Li ⁺	76	3.27	13.6
Na ⁺	102	1.53	14.2
K ⁺	138	0.680	14.5
Be ²⁺	45	23.2	5.4
Cu ²⁺	66	9.33	8.0
Ni ²⁺	69	8.35	9.9
Mg^{2+}	72	7.51	11.4
Zn^{2+}	74	7.00	9.0
Co^{2+}	74	7.00	9.7
Mn^{2+}	83	5.23	10.6
Ca ²⁺	100	3.22	12.8
Al^{3+}	53	23.8	5.0
Cr^{3+}	61	17.0	4.0
Ti ³⁺	67	13.5	2.2
Fe ³⁺	78	9.19	2.2
		9.19	

The p K_a of H_3O^+ is -1.7, and the p K_a of water is 15.7.

