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17-1 Acids, Bases, and Conjugate
Acid-Base Pairs

Bronsted-Lowry theory
An acid 1s a proton donor.

A base 1s a proton acceptor.

CH;COOH(aq) + H,0(aq) <——= CH,COO™ (aq) + H;0"(aq) (17.1)

Acid Base Base Acid
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Conjugate acid-base pair

| |

CH;COOH(aq) + H,0(aq) <——= CH;COO™ (aq) + H;0"(aq) (17.2)

Acid Base Base Acid

| |

Conjugate acid-base pair

An acid contains at least one ionizable H atom, and a base contains an
atom with a lone pair of electrons onto which a proton can bind.
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A FIGURE 17-1
The ionization of CH;COOH in water
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Conjugate acid-base pair

| |

NH;(aq) + H,O(aq) ——= NH," (aq) + OH (aq)

Base Acid Acid Base

| |

Conjugate acid-base pair

(17.2)
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NH, g o HEU
base acid acid base

A FIGURE 17-2
The ionization of NH; in water



 An acid contains at least one 1onizable H atom, and a base
contains an atom with a lone pair of electrons onto which a
proton can bind.

» For a conjugate acid—base pair, the molecular formulas for the
acid and base differ by a single proton (H")

 When added to water, acids protonate water molecules to form

hydronium (H;O") 10ons and bases deprotonate water molecules to
form hydroxide (OH") ions.

p FIGURE 17-3 y ’ " '

The hydrated hydronium ion & '



17-2 Self-lonization of Water and the pH Scale

2 H,0() =———= H,0" (aq) + OH (aq) (17.3)

2 H,0(l) == H,;0"(aq) + OH (aq)

-

- oo

:?——H + T:Q—H: :|——H - :0—H
H H
Base Acid Acid Base
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ion product of water

k= 0@ on @ _ (H;07]/¢%) (OH ]/c°) _([H,0'T\([OH ])
" Bon (1)? M JU 1M

K=[H,0'][OH ]=1.0x10 "(at 25°C) (17.4)

[H,0']/(AM)=[OH ]/ M)=1.0x10"(at 25°C) (17.5)
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In all aqueous solutions at 25°C, the product of [H;0"] and [OH™] always
equals 1.0 X 10714,

The self-ionization of water 1s partially suppressed by the addition of acid or
base to water.
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pH and pOH

The “potential of the hydrogen ion” was defined in 1909 as
the negative of the logarithm of [H].

pH = —log[H;0"]

[H,0']=2.5% 103 M pH =45
pH =-log(2.5%107%)=2.60 log [H;O*] =—4.5

[H,0°]=10*5=3.2% 10
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pOH = —log[OH]
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Ky = [H,O"][OH]
—logKy, = —(log[H;0"]+log[OH])
pKy = —(log[H;0*]+log[OH])
= —log[H;0%] —log[OH]

=pH + pOH

pH + pOH = 14 (at 25°C) (17.8)



Acidic, Basic, and Neutral Solutions

Table 17.1 Acidic, Basic, and Neutral Solutions

Neutral Solution Acidic Solution Basic Solution
Relationship between
[H,O%] and [OH™] [H,OF]=[OH] [H,O"] > [OH™] [H,O"] < [OH]
[H O] at 25°C [H;OF] =1.0 x 1077 M [H,OT] > 1.0 x 1077 M [H,07] < 1.0 x 1077 M
pH at 25°C pH=7 pH<7 pH>7
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[H,07"] pH  [OH] pOH

14.00 0.00

12.00 2.00

o 11.00 3.00
8 10.50 3.50
o 10.00 4.00
= 9.00 5.00
8.00 6.00

- 7.00 - 7.00 ——

6.00 8.00

o 5.00 9.00
= 4.00 10.00
S 3.50 10.50
g 3.00 11.00
2.00 12.00

1.00 13.00

\/ \/ 0.00 14.00

A FIGURE 17-4

Relating [H;0%], pH, [OH"], and pOH

BASIC

NEUTRAL

ACIDIC
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I M NaOH
1014 (pH 14.0)

Household
AMMOonia
(pH 11.9)

BASIC

Milkof [
MAgnEsia
(pH 10.5)

Baking soda
(0.1 M) (pH 8.4)
Sea water [~ 8
(pH 7.0-8.5)
Blood

079 (pHT4H [7
Milk
(pH 6.4)
Urine
(pH 5-T7)

NEUTRAL

Beer
(pH 4-4.5)
Carbonated [~ 4

water

(pH39) | ,
Vinegar !
(pH 2.4-3.4)

ACIDIC
o

Gastric juices
(pH 1.0-2.0}

1 M HCI
(pH = 0)

[H,07] pH

A FIGURE 17-5
The pH scale and pH values of some common materials
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17-3 lonization of Acids and Bases in Water

A FIGURE 17-6 Thymol Blue Indicator
Strong and weak acids compared <12<pli<2.8<pH
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Table 17.2 Relative Strengths of Some Common Brgnsted-Lowry Acids and Bases

Acid Conjugate Base
Perchloric acid HCIO, Perchlorate ion ClO,~
Hydroiodic acid HI [odide ion I~
Hydrobromic acid HBr Bromide ion Br~
Hydrochloric acid HCl Chloride ion Cl—
Sulfuric acid H,50, Hydrogen sulfate ion HSO,~ ﬁ;
5 | Nitric acid HNO, Nitrate ion NO;~ g
% | Hydronium ion? H,0™ Water? H,0 z
g Hydrogen sulfate ion HSO,~ Sulfate ion 8042_ £
= | Nitrous acid HNO, Nitrite ion NO,~ o
2 | Acelic acid CH,COOH Acetate ion CH,COO~ g
§ Carbonic acid H,CO, Hydrogen carbonate ion HCO;™
é Ammonium ion NH4+ Ammonia NH,
Hydrogen carbonate ion HCO4~ Carbonate ion CO32_
Water H,O Hydroxide ion OH™
Methanol CH,OH Methoxide ion CH,0™
Ammonia NH, Amide ion NH,™

The hydronium ion-water combination refers to the ease with which a proton is passed from one water molecule to another; that
is, H,O+ + H,0 == H,0 + H,0*
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HA(aq) + H,0O(aq) <—= A" (aq) + H;0"(aq) (17.9)

CO

K = 1,0 )" A~ (ag) _ ([H,0"]/¢°) (JOH ]/¢°) _ ( [H.O'][ A]\ x( 1 )
Fincan),00) ([HA]/¢®) (1) [HA]

x ~UHLO'IIA |
[HA]

(17.10)

pK,=-logK_ or K, =107 (17.11)
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B(aq) + H,O(aq) <—— BH" (aq) + OH (aq) (17.12)

K, -2 I0N -
pK, =—logK, or K, = 107" (17.14)
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HA(aq) + H,0(aq) <——= A" (aq) + H;0"(aq)

x ~UHLO'IIA |
[HA]

« A strong acid or base has a large 10onization constant:
K, or K, 1s much greater than 1.

A weak acid or base has a small 1onization constant:
K, or K 1s much less than 1.

B(aq) + H,0(aq) <——= BH" (aq) + OH (aq)

_[BH'J[OH ]

Kb
|B]
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Table 17.4 lonization Constants of Some Weak Acids and Weak Bases in Water at 25°C
lonization
lonization Equilibrium Constant K pK
Acid K, = pPK, =
Todic acid HIO, + H,0 H,0" + 10, 1.6 X 107! 0.80
Chlorous acid HCIO, + H,O H,O% + ClO,~ 1.1 x 1072 1.96
Chloroacetic acid ~ CICH,COOH + H,0 H,O" + CICH,COO~ 1.4 x 1073 2.85
Nitrous acid HNO, + H,0 H,0" + NO,~ 72x107% 314
Hydrofluoric acid HF + H,0 H, 0" +F~ 6.6 X 1074 3.18 =
Formic acid HCOOH + H,0 H,0" + HCOO™ 1.8 X 1074 3.74 &
Benzoic acid CcH<COOH + H,0 H,0" + C,H,COO™ 63 X 1073 4.20 £
Hydrazoic acid HN; + H,0 H;01 4+ N3~ 1.9 X 1073 4.72 2
Acetic acid CH,COOH + H,0 H;0* + CH;COO~ 1.8 X 1073 4.74 <
Hypochlorous acid HOCI + H,0 H,0" + 0oCl~ 2.9 x 1078 7.54
Hydrocyanic acid HCN + H,0 H,0" + CN~ 6.2 10710 92]
Phenol CcHsOH + H,0 H,0" + C,HO~ 1.0 x 10719 10.00
Hydrogen peroxide H,0, + H,0 H,0" + HO,™ 18x10712 1174 L
Base K, = pK,, =
Diethylamine (CH;CH,),NH + H,0 (CH,CH,),NH,* + OH76.9 x 104 3.16
Ethylamine CH,CH,NH, + H,0 CH,CH,NH,* + OH™ 43 x 1074 337 e
Ammonia NH, + H,0 NH," + OH™ 1.8 X 1073 4.74 E
Hydroxylamine HONH, + H,O0 HONH,* + OH~ 9.1 x 1077 8.04 2
Pyridine CsHsN + H,0 CsH;NH* + OH~ 1.5 X 1079 8.82 3
Aniline CHNH, + H,O C HNH;* + OH™ 74x10719 913
KAIST
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17-4 Strong Acids and Strong Bases

HCl(aq) + H,0(aq) —> CI (aq) + H;0*(aq)

unless the solution of HCI is extremely dilute we can ignore the
self-ionization of water. Even when [HCI] is as low as 1 X 107 M,
the 1onization of H,O only contributes 1%.

With strong bases, the contribution from the self-ionization of
water 1s also negligible.

Ca(OH),(aq) + H,0(aq) — Ca” (aq) + OH (aq)

KAIST
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17-5 Weak Acids and Weak Bases

The key to solving equilibrium problems is to be able to
imagine what 1s going on. Ask yourself:

Which are the principal species in solution?
What are the chemical reactions that produce them?

Can some reactions (for example, the self-ionization of water) be
ignored?

Can you make any assumptions that allow you to simplify the
equilibrium calculations?

What is a reasonable answer to the problem? For instance, should the
final solution be acidic (pH < 7) or basic (pH > 7).
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17-6 Polyprotic Acids

p Phosphoric acid, H;PO,

A triprotic acid.

H,PO, +H,0 == H;0" + H,PO,~ Kk = [HB([)IJ:I] [;E;P]O 1 7.1x107°

_[H,0'][HPO,* ]
- [H,PO, ]

H,PO, + H,O== H,0'+ HPO,> K, =63x10°

_[H,0'][PO,* ]

4 1_42x107"
[HPO,” ]

HPO42_ + Hzoﬁ H30+ + PO43_ KaS

KAIST
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Kal = KaZ
All H;0O" is formed in the first ionization step.

H,PO, essentially does not 1onize further.

Assume [H,PO, ] = [H;07].

[HPO,* ] = K, regardless of solution molarity.

[H,0'[HPO,” ]

[H,PO, ] “
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Table 17.5 lonization Constants of Some Polyprotic Acids

Acid lonization Equilikria lonization Constamts, K pk
Hydrogulfurics H,S + H,0 = H,0" + HS™ K, = 10% 1077 pK, =700 [ ]
HS™ + H,0 == H,0% + §*~ K, =1x107" pk, =190
Carbanic® H,COy + Hy0 =— Hy0% + HCOy™ K, =44x1077 pK, =636
HCO,™ + H,0 = H,0' + C0;*~ Ky, = 4.7 % 101 pK,, = 1033
Citric HyCgH;0; + Hy0 == Hy0" + HCHO,™ K, = 7.5 % 107 pK, =312
HyCeli0,™ + HyO 7= H 07 + HGMHOP™ K, =17 x107° pk, =477
HCH DT + 0 == H0' + CH0.7 K, =40x 1077 pK,, = 6.40
Phespharic HyPO, + H,0 = H;0* + HPO,~ K, = 71% 107 pK, = 2.15 E
HPO,” + H,O = H07 + HPO2™ K, =63 %1074 pK, =7.20 -
HPO™ + H,0 = H 0" + PO~ Ky, =42x 1075 pK, = 1238 ﬁ
Oixalic HyC,0, + H0 == H;0* + HC0,~ K, =56 107 pK, = 125
HC,0,~ + Hy0 =— Hy0% +C,0,~ K, =54x107% pK, =427
Sulfurous® H,504 + H,0 = H,0% + HS0,~ K, =13 %1072 pK, =189
HS0;~ + H,0 == Hy0" + 8042~ K, =62x107% pK, =721
Sulfuric H,50, + H,0 — H,0" + HS0,~ K, = very large pk, <0
HS0,~ + H;0 == H;0" + 50,2 K, =11x 1072 pK,, = 1.96

"Iheva]uefm’KaI of Hy5 miost commeonly found in older literature is about 1 = ID‘“'J but current evidence suggests that the valus

is considerably smaller.

bH1C53 cannot be isolated. It is in equilibrium with Hy(r and dissolved OOy, The value given for K, is actually for the reaction
COn(ag) + 2HD —=H0O+ + HCO3~

Cenerally, aqueous solutions of (0, are treatad as i the COO4(aq) wee first converted to HyCOhy, followed by ionization of the

H,CO,
FH50; is a hypothetical, nonisclatable species. The value listed for K, is actually for the reaction

S0z(aq) + 2H;0 —=H,0* + H50;"
4H,50), is completely ionized in the first step.



A Somewhat Different Case: H,SO,

D Sulfuric acid, H,SO,

A diprotic acid.

H,SO, + H,O— H;0"+ HSO,~ K, = very large

HSO,” + H,O==H,0"+SO,>  K,=1.1x1072

the small second 1onization can be treated as in EXAMPLE 17-11



17-7 Simultaneous or Consecutive Acid-Base
Reactions: A General Approach

1. Identify species present in solution (excluding H,O).

2. Write equations that include these species.
Number of equations = number of unknowns.
a) equilibrium constant expressions.
b) material balance equations.

c) electroneutrality condition.

3. Solve the system of equations for the unknowns.
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Consider 0.10 M H,;PO,

Species in solution
H,PO,, H,PO,”, HPO,*", PO,3", H;O", OH"

Reactions and equilibrium constants

H,PO,(aq) + H,0(l) == H,0*(aq) + H,PO, (aq) K= [HB?I;]%P]OJ _7.1x10°

H,PO, (aq) + H,O(l)== H;0%*(aq) + HPO,>*(aq) K , = [Hﬁ;]ggo]“z] —63x10°

HPO,2 (aq) + H,0(l) == H,0"(aq) + PO, (aq) K, = [HESI;]([)P?{] —42x10™

2 H,0O(1) ==H;0"(aq) + OH (aq) K =[H,O'][OH ]
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Consider 0.10 M H,;PO,

Species in solution
H,PO,, H,PO,”, HPO,*", PO,3", H;O", OH"

Reactions and equilibrium constants

H,PO,(aq) + H,0(l) == H,0*(aq) + H,PO, (aq) K= [HB?I;]%P]OJ _7.1x10°

H,PO, (aq) + H,O(l)== H;0%*(aq) + HPO,>*(aq) K , = [Hﬁ;]ggo]“z] —63x10°

HPO 2 (aq) + H,0(l) == H,0"(aq) + PO, (aq) k., = [HESI;]([)P?{] —42x10™

2 H,0O(1) ==H;0"(aq) + OH (aq) K =[H,O'][OH ]
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We have four equations and six unknowns. Need two equations.

Material balance equation (MBE)

0.1 M = [H,PO,] + [H,PO, ] + [HPO,> ] + [PO, 3]

Charge balance equation (CBE)

[H,07] = [H,PO,] +2 X [HPO,*7] +3 X [PO,*7] +[OH]

In principle, the system of six equations can be used to solve
for six unknowns, either by making appropriate simplifying
approximations or by computerized calculation.

KAIST
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17-8 lons as Acids and Bases

NH,”+ HjO== NH;+ H;0"
Acid (1) Base (2) Base (1) Acid (2)

CH,CO,” + H,0 — CH,CO,H + OH"
Base (2) Acid (1) Acid (2) Base (1)

[NH,] [H;0"]
K= =7
) [NH,"]

(17.17)

(17.18)

(17.19)
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[NH,] [H,0]

NH,”+ H,O == NH; + H;0" K = %
Acid (1) Base (2) Base (1) Acid (2) a [NH, ]
CH,;CO, + H,0== CH;CO,H + OH"
Base (2) Acid (1) Acid (2) Base (1)
H.O"] [OH™ K 1.0x 10714
. [H0][OH] Ky Cexio

) K 1.8 X107

KAIST
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The product of the ionization constants of an acid and its conjugate base
equals the ion product of water.

K. (acid)* K. (its conjugate base) = K
, (acid)xKy ( jug ) =K, (17.20)

K, (base)xK, (its conjugate acid) = K,
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CH,CO,” + H,0 == CH,CO,H + OH" (17.18)

o [CH,COOH][OH] K ~1.0x10™"

w

, - — — —~ — 5 X 10—10
[CHCOO |  K.(CH,COOH) 18x10

The conjugate of weak 1s weak.
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K,(I)=K,6 /K, =10"*/10"=10"

The conjugate of strong is extremely weak.
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17-10 Molecular Structure and Acid-Base
Behavior

Why 1s HCI a strong acid, but HF 1s a weak one?
Why 1s CH,CO,H a stronger acid than CH,CH,OH?

Molecular structure and acid strength are related.

KAIST
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Strengths of Binary Acids

HX(g) — H'(g) + X(g) (17.23)

D(H—X
HX(g) ( ) > H(g) + X(g)

\T) J'_e_ A HJ«_I_e_
DH*X") -
H"(g) + X (g)

KAIST 7
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K

a

D(H—X)
DH* X™)

increasing acid strength

H—CH, H—NH, H—OH H—F
1 X 1060 1x 10734 1.8% 1071 | 6.6x1074
414 389 464 565
1717 1630 1598 1549
H—SH H—Cl
10" 1 X 100
368 431
1458 1394
H—SeH H—Br
1.3x1074 1 %108
335 364
1434 1351
H—TeH H—I
p R & [ g 1 x10°
277 297
1386 1314

A FIGURE 17-10

Bond dissociation energies (kJ mol~') and K, values for some binary acids




When comparing binary acids of elements in the same row of the periodic table,
acid strength increases as the polarity of the bond increases.

When comparing binary acids of elements in the same group of the periodic
table, acid strength increases as the length of the bond increases.

HF 1s even weaker than expected based on periodic trends.

HF +H,0 — (F--H,0") = H,0"+F-

[on pair
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Strengths of Oxoacids

Factors promoting electron withdrawal from the OH bond to

the oxygen atom:
High electronegativity (EN) of the central atom.
A large number of terminal O atoms in the molecule.

H-0—Cl H-O-Br
ENg, =3.0 EN,=2.8
K,=2.9%108 K,=2.1%107
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K, =10 K,=1.3% 102
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Strengths of Organic Acids

H :ﬁ: H H
! -
Acetic acid Ethanol
K,=18%107 K,=13%10716
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Focus on the anions formed 1n the 1onization.

Ethoxide 1on

, H H
Acetate 10n
H O H
A
O\

KAIST
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Chain length has little effect on the acid strength.

H /./O © acetic acid

He ¢ —C K,=18%10°
\ .
H 0. octanoic acid
K,=13%10°
H H H H H H H /’o,-
H—C—C—C—C—C—C—C C\

H H H H H H H 0.

KAIST
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Substitution may strongly affect acid strength.

H /./O ©acetic acid
H—C—C K,=18%X107
\O"_ chloroacetic acid
H K,=14x%x107
Cl 0.
-
H—C—C
O\

KAIST
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Strengths of Amines as Bases

H
H—N:

H
ammonia

NH,, pK, = 4.74

H
Br—N:
H
bromamine

NH,Br, pK, = 7.61

KAIST ¥4
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H

H—I‘\TI

H

ammonia

NH.,, pK, = 4.74

H

H

C—NH,
H
methylamine

CH,NH,, pK, = 4.74

H H

H—C—C—NH,

H H

cthylamine

CH,CH,NH,, pK, = 3.38
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¥ oo

N L
NH, NH,
Cyclohexylamine, pK, = 3.36 Aniline, pK,, = 9.13
NH,
Cl
para-Chloroaniline, pKy = 10.01 ortho-Chloroaniline, pK, = 11.36
KAIST 9,
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Rationalization of Acid Strengths: An
Alternative Approach

Two approaches to rationalize the strength of an acid, HA.

» factors that cause electron density to be drawn away from the H atom

» factors that make A~ stable with respect to protonation

Increasing stability

CC | N | O | F™
F | 5 | Cl

Se” | Br™

im0 i

[ncreasing
stability
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the more electronegative the atom 1s, the better it 1s able to
bear a negative charge. (CH;O™ is more stable than NH,")

the larger the atom, the greater its ability to bear a negative
charge. (HS™ is more stable than HO")

the stability of the anion increases as the number of
electron-withdrawing groups increases.

the stability of the anion increases as the number of atoms
sharing the charge increases

KAIST
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17-9 Lewis Acids and Bases

Lewis acid

A species (atom, ion or molecule) that is an electron pair acceptor.

Lewis base

A species that is an electron pair donor.

If :l|3': Iﬁ :IT:
HoN” B — BN B
H :": H :":
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Ca2+:§:2— +

.-o/"\oc.

(17.24)

KJ
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Complex 10ons
F OH, 3%

A FIGURE 17-11
The Lewis structure of [Al(H,0):]** and a ball-and-stick representation



o)
H,O0w, ~OH
H,0 | TOH,

OH,

A FIGURE 17-12

Hydrolysis of [Al(H,0)¢]** to produce H,0*

N

:(|)H
H,Ou,, | .OH
H,0¥ | TOH,

OH,
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p = charge density =

Metal lonic p x 107,

Cation  Radius, pm Charge pm—3 pK,
Lit 76 3.27 13.6
Na™ 102 1.53 14.2
K+ 138 0.680 14.5
Be?t 45 23.2 5.4
Cu?* 66 9.33 8.0
Ni2+ 69 8.35 9.9
M%ﬂ 72 7.51 11.4
Zn“* 74 7.00 9.0
Co?t 74 7.00 9.7
Mn?* 83 5.23 10.6
e 100 3.22 12.8
APF 53 23.8 5.0
Crt 61 17.0 4.0
Tid+ 67 13.5 22
Fe’t 78 9.19 22

The pK, of H;O% is —1.7, and the pK_ of water is 15.7.

pK a

1onic charge

16

2

(

1onic volume

)

10 15 20 25 30
Charge density (charge/pm?)
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