Oxtoby Chapter 8 Assignments

Chapter Summary Topics

- \checkmark Crystal field theory and *d*-orbital splitting by geometry of the coordination complex
- ✓ Spectrochemical series of ligands and predicting magnetic properties of coordination complex

Chapter Problems

8-55. Three different compounds are known to have the empirical formula $CrCl_3 \cdot 6H_2O$. When exposed to a dehydrating agent, compound 1 (which is dark green) loses 2 mol water per mole of compound, compound 2 (light green) loses 1 mol water, and compound 3 (violet) loses no water. What are the probable structures of these compounds? If an excess of silver nitrate solution is added to 100.0 g of each of these compounds, what mass of silver chloride will precipitate in each case?

8-57. Cobalt(II) forms more tetrahedral complexes than any other ion except zinc(II). Draw the structure(s) of the tetrahedral complex [CoCl₂(en)]. Could this complex exhibit geometric or optical isomerism? If one of the Cl⁻ ligands is replaced by Br⁻, what kinds of isomerism, if any, are possible in the resulting compound?

8-59. A coordination compound has the empirical formula PtBr(en)(SCN)₂ and is diamagnetic.

- A. Examine the *d*-electron configurations on the metal atoms, and explain why the formulation $[Pt(en)_2(SCN)_2][PtBr_2(SCN)_2]$ is preferred for this substance.
- B. Name this compound.

8-65. The complex ion $CoCl_4^{2-}$ has a tetrahedral structure. How many *d* electrons are on the Co? What is its electronic configuration? Why is the tetrahedral structure stable in this case?

8-66. In the coordination compound $(NH_4)_2$ [Fe(OH₂)F₅], the Fe is octahedrally coordinated.

- A. Based on the fact that F^- is a weak-field ligand, predict whether this compound is diamagnetic or paramagnetic. If it is paramagnetic, tell how many unpaired electrons it has.
- B. By comparison with other complexes reviewed in this chapter, discuss the likely color of this compound.
- C. Determine the *d*-electron configuration of the iron in this compound.
- D. Name this compound.