2019 Spring Semester Quiz 2 For General Chemistry I (CH101)

Date: Apr 01 (Mon), Time: 19:00 ~ 19:45

Professor Name	Class	Student I.D. Number	Name

- **1.** (Total 10 pts) **Choose the correct answer to complete each statement.** (2 pts for each correct sentence, –2 pts for wrong sentence, 0 pt for no answer.)
- (a) Ground state electron configuration of Chromium is ([Ar] 3d⁴ 4s² / [Ar] 3d⁵ 4s¹). (Atomic number of Chromium is 24.)
- (b) Atomic N is (paramagnetic) / diamagnetic), and Molecular N_2 is (paramagnetic) / diamagnetic)
- (c) Ionization energy of Aluminum is (larger / smaller) than Magnesium.
- (d) Bond length of C_2 is (longer / shorter) than B_2 .
- (e) Angular momentum quantum number(l) describing $2p_z$ orbital is (0 1 / -1 / both 1 and -1).
- 2. (Total 10 pts) Identify the orbital for each given wavefunctions of an electron in a hydrogen atom. ($a_0=0.529\times 10^{-10}~\text{m}$)

(a) (5 pts)
$$\psi(r,\theta,\varphi) = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$$

Answer : ______ (no partial point)

(b) (5 pts)
$$\psi(r,\theta,\phi) = \frac{1}{81\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(\frac{r}{a_0}\right)^2 e^{-r/3a_0} \sin\theta \cos\theta \sin\phi$$

Answer : _____3dyz_____ (no partial point)

<Hint for Problem 2>

- 3. (Total 10 pts) Answer the question below.
- (a) (6 pts) Draw the correlation diagram of the valence electron of O_2 . Consider only 2s, $2p_x$, $2p_y$, and $2p_z$ atomic orbitals. Consider O–O bond is parallel to z-axis. You should clearly note which atomic orbital contributes to molecular orbital. Also, you don't have to mention the symmetry(g, u) of orbitals.

- 1. Proper MO order: +4 points (if wrong, 0 point)
- 2. Proper electron placement (Pauli / Hund / Aufbau): +1 point
- 3. Proper labeling of MO: +1 point
- (b) (2 pts) Using correlation diagram above, determine the ground-state valence electron configuration of the $\mathbf{0}_2$ molecule.

All notation shown below are possible answers.

$$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p_z})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^2 (\pi_{2p_y}^*)^1 (\pi_{2p_y}^*)^1 / (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p_z})^2 (\pi_{2p})^4 (\pi_{2p}^*)^2 / (\sigma_{2s}^*)^2 (\sigma_{2p_z})^2 (\sigma_{2p_z})^2 (\pi_{2p_z})^2 (\pi_{2p_z})^4 (\pi_{2p_z}^*, \pi_{2p_y}^*)^4 (\pi_{2p_z}^*, \pi_{2p_y}^*)^2$$

If AO is not mentioned, -0.5 point.

If 1s orbital related MO mentioned, -0.5 point.

(c) (2 pts) Predict the bond length of $\, O_2, \, O_2^+, \, \text{and} \, \, O_2^-. \,$

Answer:
$$(0_2^-) > (0_2^+)$$

4. (Total 10 pts) Calcium carbide, is a compound with the chemical formula of CaC_2 . It is used for the industrial production of acetylene(C_2H_2). It is the calcium salt of the carbide ion(C_2^{2-}). (a) (2 pts) Draw the Lewis diagram of carbide ion. Indicate formal charge of each atom.

(Hint: Consider the structure of acetylene(C₂H₂) may help.)

(b) (4 pts) Sketch a valence bond (VB) model of the carbide ion, showing the hybridization on the C atoms, the σ skeletal structure, lone pair electrons and π -bonding.

(c) (4pts) Draw the correlation diagram of the valence electron of carbide ion to determine bond order. Consider only 2s, $2p_x$, $2p_y$, and $2p_z$ atomic orbitals. Consider C–C bond is parallel to z-axis. You should clearly note which atomic orbital contributes to molecular orbital. Also, you don't have to mention the symmetry(g, u) of orbitals.

Example of orbital notation : $oldsymbol{\sigma}_{2p_{_{oldsymbol{z}}}}^{*}$

Bond order : _____3___

- 1. Proper MO order: +2 points (if wrong, 0 point)
- 2. Proper electron placement (Pauli / Hund / Aufbau): +0.5 point
- 3. Proper labeling of MO: +0.5 point
- 4. Correct bond order: +1 point